Mark Grossman: Solar Flares & CME’s — Who Loves the Sun?

12 September 2013

Love the Sun?  It’s easy on a mildly warm spring day.  Flowers are in bloom, and children play.  The warm sunshine lightly caresses your face.  However, if you’re an astronaut or it’s your job to protect the integrity of our electrical grid, you know there’s another side to the Sun: the Sun’s dark side.  Well, not really dark.  The Sun’s always light, but you get the idea.

In fact, it’s just when the Sun is at its very brightest — when it flares — that it’s most dangerous.  Cheerful light-giver or flaring disrupter, the Sun’s disposition not only changes like the weather, the changes are called the “weather.”  But the Sun’s weather is referred to as “space weather” because its powerful effects dominate the entire Solar System — the planets and the space in between.

The solar wind is the constant out-flowing of charged particles from the Sun into space.  When this wind strikes the earth’s magnetic field, it produces auroras visible at the poles.  At the North Pole, this aurora is known as the northern lights.  But the Sun has more than “wind,” it also has its own version of lightning — solar flares.

Just when you thought it was safe to go back into space . . .

The Sun’s weather goes through eleven-year cycles marked by increases and decreases in the number of sunspots.  These “spots” are slightly darker and cooler areas on the surface of the Sun, which are created by magnetic forces beneath the Sun’s surface.  Sunspots are like caps trapping a lot of pent-up energy below the surface.  Although the exact mechanics of solar flares is still a mystery, when the trapped energy reaches a certain level, it bursts out of the Sun in the form of a solar flare.  Invisible from the surface of the earth, a solar flare’s signature is only detectible using telescopes operating outside the earth’s atmosphere — in space.

On the good side, these flares actually have little effect on those of us with the good sense to stay out of space.  The earth’s atmosphere shields us from almost all the effects of solar flares.  At their worst, X-class flares affect the earth’s upper atmosphere and can cause radio blackouts for short periods of time.  But the earth’s atmosphere is no protection if you’re in space.  So, if you’re an astronaut, gadding about in the heavens, these flares are big trouble.

With solar flares, the Sun ejects radiation powerful enough to pass through the outer shell of a spacecraft, a spacesuit, and the human being inside.  In space, exposure to a solar flare is fatal.  Again, the typical spacesuit and spacecraft provide no protection for the unlucky astronaut caught in the radiation from one of these flares.

So, how did our astronauts survive the missions to the Moon?  With careful timing.  Although the timing of any particular solar flare can’t be predicted, there are rather definite cycles of rest and activity.  Our lunar missions were carefully timed to coincide with periods of low activity.  Still, one of the greatest known, but least publicized, risks of a trip to the Moon was an unexpected solar flare.

Why so little publicity?  I would guess that attention tends to focus on factors that human effort can influence or control.  With solar flares, silent hope may be the most natural response to a possible event so firmly and completely in the hands of fate.

Novelist James A. Michener wrote “Space,” a fictionalized account of the history of the U.S. space program from the end of World War II through the Apollo landings on the Moon.  The book ends with a fictional tragedy in which risky timing of a Moon mission results in the deaths of two astronauts from exposure to a solar flare.

Needless to say, this doesn’t bode well for those hoping to colonize the earth’s lifeless and barren satellite — the Moon.  Of course, solar flares can be ducked and dodged.  Colonists would have a bit of warning.  We can detect solar flares as they leave the Sun.  After detection, there would be about 8 minutes for colonists or astronauts to receive the warning and take substantial cover.

The perils of space travel aside, most of us can breathe a sigh of relief when it comes to solar flares.  As long as we stay out of space, we’ll be ok.  I don’t know about you, but I can handle a life without extensive space travel.  And the Moon is not my idea of a garden spot for a vacation.  So, I doubt I’ll ever be living there.

Unfortunately, the Sun ejects something worse than flares — something less like a wind, and more like an ocean tsunami.  Coronal Mass Ejections, CME’s, are the worst of the worst.  On the earth’s surface, we can avoid the flares, but not these waves.  Still, a CME could come and go and, if you were asleep in your hammock, you might not even know it.

Sunspots are held in place by magnetic fields, which occasionally collapse, or break, releasing a blast of plasma from the Sun’s surface — a CME.  These leave the Sun at about 7 million miles per hour.  They are not infrequent, but the sun throws off CME’s in any and all directions.   The earth is a small target.  So, very, very few of the many CME’s strike the earth.

When a wave of highly charged particles does strike the earth, it extends the earth’s magnetic field stretching it farther and farther until the field snaps-back. This “snap-back” discharges an extremely large amount of electrical energy into the earth’s atmosphere.  Then, the stretch and snap-back action is repeated — again and again.  As the process continues, the earth’s atmosphere becomes saturated with electrical potential.

The highly charged atmosphere produced by a CME comes and goes far too quickly to affect human health.  The same atmosphere that picks up the electrical charge, also, protects human beings from the directly harmful physical effects of CME’s.  But without the protection of the earth’s atmosphere, astronauts and hypothetical lunar colonists would suffer swiftly fatal injuries from a CME — just as they would from a solar flare.  Spacecraft shells and spacesuits offer as little protection from CME’s as they do from solar flares.

However, CME’s move more slowly.  Our astronauts or lunar colonists could have between one and five days advance warning of a CME’s arrival.  Like a jellyfish alert at the seashore, the warning could go up with some time to spare.  Just as swimmers can stay out of the sea to avoid jellyfish stings, so astronauts or lunar colonists could take substantial shelter until the radiation from a CME subsided.

So, why are CME’s so much worse than solar flares?  While CME’s are relatively harmless to human beings in the earth’s atmosphere, these waves can be the kiss of death to electrical transformers and sensitive electrical equipment.

Although high-magnitude CME’s are rare, these can create an intense electromagnetic charge in the earth’s atmosphere, which could damage sensitive electronic equipment.  However, the greatest potential danger is to the electrical transformers and electrical transmission lines that form our electric power grid.  In other words, without prompt defensive action, a powerful CME could potentially destroy our power grid or, at least, trigger prolonged blackouts.

Today, the potential dangers from CME’s are understood.  With one to five days advance warning, serious damage to the equipment used to supply our electric power could easily be avoided by shutting down the entire grid.  Not that such a shutdown wouldn’t be disruptive, but disruption is better than disaster.

Without a shutdown, the electrically charged atmosphere produced by a high-magnitude CME could induce a tremendous increase in the electrical load on power transformers and the entire power grid.  With the power grid in North America operating at about capacity, a sudden and enormous increase in electrical load could cause power lines to sag or even snap.  Transformers would blowout and massive blackouts would affect much of North America.

At the same time, a powerful CME would cause magnetic turbulence that would interfere with radio signals, electronic communications, and satellites causing temporary communication failures. GPS signals could be disrupted.  Long metal structures, like pipes, could pick up and carry electrical currents with a variety of unintended and unfortunate results.

Without a prior shutdown, the damage could take a month or more to repair.  Emergency services would have to operate with limited electric power and possibly damaged communication equipment.  Cell phones or computers might not be directly affected, but the communication infrastructure, including cell relay towers and internet services, might be disabled making much of our communication technology useless.

However, before we become survivalists, stocking canned goods in our cellar in anticipation of the next CME, there is some good news to keep in mind.  No expensive equipment or years of upgrading are necessary to protect our power grid — just a prompt and complete shutdown.  Another piece of good news is that a high magnitude CME, one that could do the damage described above, only strikes the earth about once every 500 years.

Of course, some have suggested fantastically expensive and complicated accommodations to shield our ever-changing and growing electrical grid systems.  However, most of these accommodations are less than necessary.  With one to five days advanced warning, a complete shutdown is relatively simple to implement.

But what about exposed communication equipment such as satellites and our communication infrastructure — those electronics that can’t be shutdown?  Some of these devices are of vital importance to emergency services.  Here is where special shielding, though expensive, would do a great deal of good.  Communication breakdowns can have extremely serious consequences, and a good portion of our communication infrastructure can’t be shutdown.  Another substantial portion is composed of delicate electronics that could be damaged even when powered-down.

Again, the study of Greenland ice cores reveals that a super CME — ones that could cause the extensive damage — only strikes the earth about once in 500 years.  However, the ice cores also reveal that smaller events, more disruptive than destructive, happen several times a century.

During the 20th Century, three significant CME’s struck the earth: One in 1921 and a second in 1960, which produced reports of widespread radio disruption.  However, we can get the most contemporary picture of the effects of a CME from the third event, which significantly disrupted Quebec, Canada’s electrical power grid in March of 1989.

A CME left the Sun’s surface on March 6, 1989.  Three and a half days later, on March 9, intense auroras formed at the poles and could be seen as far south as Texas and Florida — these were the first signs that a severe geomagnetic storm had struck the earth.

The CME caused short-wave radio interference.  Signals from Radio Free Europe into Russia were disrupted.  Suspicions that the Soviet government had jammed the signal triggered Cold War fears of an impending nuclear strike.

By midnight, communications from a weather satellite were interrupted.  Another communication satellite, TDRS-1, recorded over 250 anomalies caused by the increased particles flowing into the satellite’s own electronics.  The space shuttle Discovery, on a mission, experienced an unusually high reading from a pressure sensor on one of its fuel cells.  The anomalous reading disappeared after the geomagnetic storm ended.

Quebec, Canada rests on a large layer of rock, which acted as shield against the natural discharge of the electricity from the highly charged atmosphere to the ground.  Without discharge into the ground, the powerful atmospheric electrical potential found its path of least resistance along utility transmission lines.  Circuit breakers on Hydro-Québec’s power grid were tripped, and Quebec’s James Bay network experienced a 9-hour power failure.

Today, geomagnetic storms and solar flares are monitored from the Solar and Heliospheric Observatory (SOHO) satellite, a joint project of NASA and the European Space Agency.  Currently, standards are being developed for utilities including the required installation of protective equipment and the establishment of emergency procedures to deal with future CME’s.  Also, special protocols are being developed for nuclear power facilities to assure core shutdowns in case of a high-magnitude CME event.

But once we know that odds of a big CME — one every 500 years — the next question is:  How long has it been since the last “big one?”

The granddaddy of them all happened on September 1, 1859.  The “Carrington Event,” began when an amateur astronomer, Richard Carrington, observed the Sun suddenly grow larger and brighter.  What he couldn’t have known, at the time, was that the Sun’s size and brightness only appeared to change.  A CME, in the form of a circular cloud was expanding out from the Sun.  This “halo coronal mass ejection,” was so bright and emitted so much light that the Sun appeared to grow in both size and brightness.

Carrington, also, couldn’t have known why the “halo” cloud appeared to be almost perfectly circular.  That apparent shape indicated that the CME was headed right for the earth.

Electrical equipment was relatively rare in 1859, but telegraph pylons threw sparks.  Some telegraph operators were shocked by their equipment even after disconnection from their power supply.  Other telegraph operators reported sending and receiving signals without external power — the equipment powered only by the electricity in the atmosphere.  Magnetic instruments, as simple as a compass, wouldn’t give consistent readings.

Auroras, like the northern lights, which are seldom visible beyond the artic circle, could be seen in the tropics.  The northern lights were so bright in the Rockies that the glow was mistaken for sunrise by gold miners, who got up and started breakfast.  In the northeastern U.S., people could read newspapers in the middle of the night by the light of the aurora.  The Baltimore American and Commercial Advertiser waxed lyrical reporting, “The light was greater than that of the Moon at its full, but had an indescribable softness and delicacy that seemed to envelop everything upon which it rested.”

This happened 154 year ago.  So, if it’s once every 500 years . . . .  Well, we’re still on the right side of the odds.

Mark Grossmann of Hazelwood, Missouri & Belleville, Illinois

About the Author



Mark Grossman: “Bye Bye Blackbird” — The Solution to the Bird Problem?

5 September 2013

Prolog:  North American bird populations have been in continuous decline for decades.  These population losses are shared by all species of birds — both “common” and “endangered.”  A National Audubon Society report, “Common Birds in Decline,” documents that there has been as much as an 80% decline in populations of many “secure” species.  In spite of endless speculation, the cause of these declines remains a mystery.  However, some declines are less mysterious than others. [1]

Let’s pick up this story in the middle.  Just minutes before New Years, on December 31, 2010, birds began to drop dead out of the sky in Beebee, Arkansas.  Hours after dark, hundreds of Red Winged Blackbirds suddenly flew out of trees and brush and into the air.  No sooner were they airborne, than they tumbled back down to the ground dead.  In the morning, thousands of dead birds were found everywhere.  A major clean-up operation was required.

No one knew the cause.  The poor night vision of this variety of blackbird makes nocturnal flight extremely rare.  Some had speculated that fireworks had frightened the birds from their roost, but the county vet was doubtful.  Some blamed the frequency of thunderstorms during the previous week, but the last thunderstorm had ended days earlier.  Others remembered the death of a flock of ducks that had fallen to the ground dead near Hot Springs in 2001.  Those deaths were attributed to a lighting strike or, possibly, hail.  But, again, there had been no storm during the last flight of Beebee’s blackbirds. [2]

During the following week, “Several hundred dead birds” were found near Murray State University in Murray, Kentucky.  The birds were “scattered around” several city blocks.  “No one could determine the cause of death,” but speculation was that “[i]t could be something in the weather.” [3]

As the news spread, one woman, living in Marshall County, Kentucky, came forward to report that she had found dozens of dead birds on her property throughout that same Christmas season. [4]

Then, on January 5, 2011, just days after the mass bird deaths in Arkansas, 500 birds were found dead on a Louisiana highway.  The location was only about 300 miles away from Beebee.  The dead birds were of three species: blackbirds, starlings, and sparrows.  Louisiana officials believed the birds fell to their deaths after “flying into a power line.”  However, the reason why 500 birds would engage in this amazingly precise flying maneuver was “still a mystery.”  [5]

Although no one immediately concluded that the weather was to blame, soon a thunderstorm was discussed as a possible cause.  Again, however, the last thunderstorm had ended days before these birds’ last flight.  With the timing of the thunderstorm so far off the mark, attention turned to a rare weather phenomenon that could suck birds into the air, hold them and, then, drop the birds, in mass, at a particular location. [6]  The 2001 deaths of the Hot Springs ducks made another appearance in media reports to illustrate weather-related bird deaths.

Pathologists all agreed that trauma was the cause of death — a broken breastbone.  In other words, the birds died from the impact as they hit the ground.  However, the reason why the birds fell out of the sky and hit the ground could not be determined.

Stress was placed on the toxicology report.  These blackbirds, starlings, and sparrows hadn’t been poisoned.  However, it’s not clear whether pathologists checked for an unusual and expensive poison like DRC-1339, which affects only a small group of bird species.  This poison metabolizes quickly in a bird’s system so that insects and animals that scavenge the dead bird would not be affected.  DRC-1339 is marketed under the commercial name that says it all: Starlicide.  [7]

After all those stories about the “mysterious” decline in North American bird populations, it turns out that at least one factor is about as mysterious as the decline in insect populations after a visit by the exterminator.

This story ends in Yankton Riverside Park in the City of Yankton, South Dakota, on the morning of January 18, 2011 — just 18 days after the first mass death in Beebee, Arkansas.  Residents were puzzled and alarmed to find hundreds of dead birds in the park.  The event received substantial publicity and a police investigation began. [8]

Like the reports of other bird die-offs over the past weeks, this latest mass death remained unexplained.  Accounts of the mysterious deaths were repeated by mystified naturalists.  Environmentalists were sure that some enjoyable aspect of modern life was responsible and, of course, should be stopped.  Those with an apocalyptic streak even worried that these mass bird deaths were a sign of the end of world.

Then, the United States Department of Agriculture contacted the Yankton Police.  The USDA representative explained that the Department of Agriculture had poisoned the birds at a location south of Yankton — adding, pleasantly, that they were surprised the birds made it as far north as Yankton before dying. [9]

This story begins with a Nebraska farmer.  We’ll call him Farmer Jones.  He complained to the USDA that starlings were defecating in his feed meal.  The USDA investigated and concluded that the birds were causing “agricultural damage.”  Also, feed meal contaminated with bird poop was “a threat to human health.”

This confronted the USDA with a difficult decision.  They had to find the most humane, economical, and least disruptive means of dealing with the problem.  On the one hand, they could provide Farmer Jones with a cover for his feed meal.  On the other hand, they could obtain a deadly poison and begin a program of mass bird extermination.  Weighing all the factors, it was apparent that mass bird extermination was the only possible solution.

Quickly consulting their staff experts, the USDA obtained large quantities of DRC-1339, a deadly poison called Starlicide, and began the implementation of their new program. Thousands of birds were allowed to feed on the poison and die.  But the USDA felt this should be the start of something really big.  They made it so.

With amazing efficiency, and certainly great expense, the USDA had fatally poisoned over 4 million birds by the time of the Yankton Park die-off.  This was no idle boast.  These numbers were, and are, documented on the USDA website.  Better yet, the USDA has a name for the program.  It’s called “Bye Bye Blackbird.” [10]

This program of systematic poisoning is costing taxpayers a lot of money and bird lovers a lot of grief.  Black birds, starlings, farmers, and feed meal have been living together since — about forever.  Call me crazy, but wouldn’t it have been cheaper and more merciful to buy Farmer Jones a cover for his feed meal?

Epilog:  The residents of Beebee, Arkansas didn’t hold a memorial on the first anniversary of the mass bird deaths of 2010.  They didn’t need to be reminded because it happened again.

On December 31, 2011, Beebee’s police dispatcher began to receive multiple calls reporting, that “blackbirds [were] falling again and that [people] found blackbirds on the streets where they live or at [their] churches,” A spokesperson for Animal Control reported that there were “birds falling down on the street and people dodging and missing them.”  A Police spokesperson later explained that this second die-off wasn’t as bad as the previous year “when birds covered the streets.”  At least this year, the clean-up would be easier because the dead birds were scattered over a smaller area.

Initial suspicion, again, fell on fireworks with news reports confirming that fireworks had caused a similar event the previous year.  Even an unnamed expert expressed the opinion that the many blackbirds flew into the air and crashed down to their deaths because they were scared by fireworks.  [11]

However, the fireworks explanation faded away as later news reports refocused on the weather.  Although there had been no thunderstorms at the time of this latest death flight, there had been thunderstorms days earlier.  And, of course, the reporters remembered those ducks that were struck by lightening in Hot Springs in 2001.

M Grossmann of Hazelwood, Missouri

& Belleville, Illinois

About the Author



Mark Grossman: The Bumblebee — The Possible Return of the Hive-less Bee

29 August 2013

In the summer of 2012, bee enthusiast Megan O’Donald encountered a bumblebee in her mother’s garden in Briar, Washington.  In the distant past, this would have hardly been noteworthy, but after the disappearance of bumblebees from Washington state, almost ten years ago, the sighting was an event. [1]  In 2013, O’Donald saw another bumblebee in a goldenrod in the same garden.

When Will Peterman, a freelance writer and photographer, heard about O’Donald’s sightings, he decided to “launch an expedition.”  He identified several “patches of habitat” in small parks and unmown lots.  Investigation of the first three sites yielded nothing but, at the fourth, he struck gold. [2]

In Briar, Washington‘s Briar Park, he found and photographed several bumblebees.  Several days later, Peterman returned to the park with a group of bee experts (entomologists) and, together, they located and photographed several bumblebee queens.

It is estimated that the United States has lost almost half of its honeybee population in just the last seven years.  However, the many species of the relatively petite honeybee differ in appearance, behavior, and habitat from that group of species called bumblebees.

The relatively large and, somewhat, rotund bumblebee has also suffered a substantial disappearance in North America.  Not long ago, the bumblebee was common throughout the Western United States and Canada.  However, beginning in the late 1990’s, its numbers declined until it all but vanished from a vast area of its range extending from the Pacific Coast of California north into British Columbia.  Mysteriously, bumblebee populations remained relatively unaffected in the mountainous portions of this same range.

Unlike honeybees, bumbles are wild bees.  They are not kept by beekeepers.  However, their wild status makes them no less important to the agricultural industry.  These bees are specially suited to pollinate a variety of cash crops including tomatoes, cranberries, almonds, apples, zucchinis, avocados, and plums and their unique style of pollination accounts for about 3 billion dollars in produce each year.

Bumblebees are known for their characteristically loud buzz.  However, unlike hive-dwelling honeybees, bumblebees don’t just buzz when they’re flying.  They can, and do, produce that same buzz without moving their wings.  And it is just the vibration from this flightless buzz that makes them uniquely valuable pollinators of certain crops.

After landing in a blossom, the large bumblebee grabs the blossom and holds it tightly.  While maintaining this tight grip, it strongly vibrates while remaining stationary.  Nothing less than the bumblebee’s strong vibration will assure pollination by shaking loose sufficient quantities of the thick pollen produced by certain species of plants.  No other bee could do this job as consistently or successfully.

While the sighting of a few bumblebees in Washington state may not seem like much, Biologist Rich Hatfield, of the Xerces Society, believes that these few sightings hold the promise of a possible bumblebee repopulation of the their abandoned Western Range. [3]

Also, these sightings came at a time when bee watchers needed some good news.  Just a few weeks earlier, 50,000 bumblebees died, in mass, in an Oregon parking lot.  The cause of the die-off remains unexplained.  Even worse, these deaths came only one week before the beginning of the newly declared “National Pollinator Week.”

The challenges to bumblebee survival grow out of its peculiar lifestyle.  Unlike the petite honeybee, the bumblebee doesn’t maintain the familiar hive.  Bumble queens locate their 12-inch wide nests rather opportunistically, in “clumps of dry grass, old bird nests, abandoned rodent burrows, old mattresses, car cushions or even in or under old abandoned buildings.” [4]  Each bumblebee nest will be used for only a single year.  And a colony will begin and end within that same year’s time.  Each year, a new nest will be built and a new colony developed in a different location.  Most colonies number only a few hundred bees, though rarely, numbers can reach as high as 2,000.

The wild bumble’s nomadic lifestyle disburses its population.  This works to their advantage by protecting them from the rapid, plague-like spread of diseases so common in the perennial and densely populated hives of the honeybee.  Also, the freestyle foraging of this wild bee limits its exposure to systematically applied pesticides.  Bumbles certainly suffer some collateral damage from pesticides and are vulnerable to certain diseases.  However, pesticides and disease, the “usual suspects” in the disappearance of the honeybee, are less prominent contributors to the decline in bumble populations.

Inspired by the honeybee colonies, human attempts to create similar domesticated bumble colonies led to one of the few documented disease outbreaks among these bees.  When a few of the experimental, domesticated queens were imported from Europe to American, they brought with them a new fungal disease, which spread among some American bumblebees.

In spite of this incident, and the plentiful speculation about the possible role of disease in declining American bumble populations, there is little evidence that any disease played a significant role in the massive North American disappearance.  In fact, the healthy bumble population levels in the Western mountainous areas of North America and Canada argue against the disease theory.  These unaffected populations suggest another cause — one more often associated with animals than insects: loss of habitat.

Certain human activities have tremendously reduced the bumble’s natural habitat.  Modern land management, agricultural and aesthetic, continues to eliminate the open, unmown grasslands and areas of brush that bumbles need for nesting.

Over the past 40 years, agricultural planning and land-use have been revolutionized to provide maximum yields.  But these modifications have destroyed vast areas of potential habitat — especially those close to sources of honey and, therefore, locations in need of pollinators.

In the past, the typical farm included a substantial number of fallow tracts of land in which wild brush and unmown grass were allowed to grow.  These areas provided breaks between fields to slow or prevent the spread of disease.  Other uncultivated areas were buffers between different types of crops.  This separation was intended to prevent bleed-over of one type of crop into fields dedicated to another.  However, the practice of planting different types of crops was, again, a kind of insurance against the spread of disease.  While one type of crop might fall victim to disease, another would be less susceptible and survive to produce a much-needed yield at harvest.  And, finally, there was crop rotation.  Some fields were periodically left fallow to prevent a loss of fertility.  All of these uncultivated areas of the typical farm were ideal habitat for the bumblebee.

However, advances in pesticides and herbicides have so reduced the incidence of crop damage and disease that a new style of agriculture, sometimes called “monoculture,” dominates farm planning and geography.  The modern farm is a study in intensive land use and specialization.  All lands are cultivated and, often, with a single crop.  Any creeping wild brush or grass growth is eliminated, quickly and thoroughly, with extremely effective herbicides.  Chemical soil fertilization is just as effective and has made crop rotation a thing of the past.  The result is a modern farm with no place for bumbles.

Beyond our farms, today’s increasingly urban world is also working to eliminate unsightly brush and unmown lands.  Even road embankments and open park areas are regularly mowed.  This creates a more pleasing cosmetic effect, but at the expense of bumblebee habitat.

In notable contrast, the bumble’s habitat remains relatively intact in the less farm-friendly mountainous areas of the Western United States and Canada.  And it is in just these areas, less touched by modern farming or systematic public landscaping, that bumble populations remain strong.

At least one organization, the Xerces Society, named for the extinct California butterfly, Xerces Blue, is currently working to advance conservation of bumblebee habitat.  The society focuses on several conservation issues including the preservation of native pollinators.  In 2010, the society’s scientists developed a bee-friendly conservation strategy, the Yolo Natural Heritage Program, operated in Yolo County California.

Alas, there have only been a few sightings, but let’s all keep our fingers crossed for the bumblebee’s return.

M Grossmann of Hazelwood, Missouri

& Belleville, Illinois

About the Author